A number of moulds are frequently found in carpet and mattress dust. Eurotium repens is the most frequently detected mould in mattress dust. Others include Aureobasidium pullulans, Alternaria alternata, Penicillium chrysogenum, Aspergillus penicilloides and Aspergillus restrictus.
More than 100 species of moulds have been recorded from carpet dust. As with mattress dust, the most frequently isolated mould in carpet dust is Eurotium repens. The others are Penicillium chrysogenum, Alternaria alternata, Aureobasidium pullulans and Phoma herbarum.
Concentrations of these moulds in carpet and mattress dust can be as high as 70 million colony forming units per gram of dust. Such high concentrations of moulds are likely to cause respiratory allergy or irritating symptoms. Therefore, it is import to regularly HEPA vacuum the carpets, mattresses and upholstered furniture to reduce the dust and spore concentration. If people are suffering from reoccurring respiratory allergy or irritating symptoms in a building where there is no visible mould, it is suggested that dust be tested for the types and concentrations of mould present.
The problem of using a single type of media is that some molds may not grow well (or may not grow at all) in the selected media. Hence, although such molds may be the dominant contaminants in the air, they may end up being missed or underestimated. The solution, therefore, is to use more than one type of mold sampling media or select one that is known to support a wide range of environmental molds. A good example is Malt Extract Agar (MEA). The problem with this media is that it also supports the growth of bacteria to some extent.
If the environment sampled is contaminated with bacteria, the bacteria grow faster than molds and interfere with mold growth. This problem can be overcome by incorporating a suitable antibiotic or other suitable compounds (e.g., Rose Bengal) into MEA to suppress bacterial growth. Rose Bengal not only suppresses the growth of bacteria but also restricts the spread of fast growing molds thus making it easy for colony counting.
Direct microscopy allows identification of the dominant contaminant (at least to genus level) regardless of whether the mold is dead or cannot grow on media used.
After plating onto DG18 and MEA and incubation (see petridishes marked “B”), Stachybotrys appeared on MEA but not on DG18. These observations clearly indicate how wrong conclusions can be made if the right type of media is not used either in air sampling or culturing of bulk samples.